Baryon spectroscopy: recent Kaon photoproduction results from CLAS

Ken Livingston, University of Glasgow

EINN2009, Sep2009, Milos Island, Greece

- Motivation
 - Missing resonances
 - 1st complete measurement in pseudoscalar meson production
- Polarization observables at CLAS
 - Progress towards a complete measurement in K⁺ photoproduction on p
 - Measurements on the neutron
- Summary

Missing resonances

- Clear indication of resonances in γp cross section for many channels
- Constituent quark models predict many resonances, but several missing
 - Mostly from πN scattering and single π photoproduction
 - Really missing or undetected since weak coupling to these channels
 - Try other channels. Eg. K photoproduction
- Eg. Cross sections show some hints of new D₁₃.
 - Better to look at angular distributions and polarization observables.

Polarization observables in pseudoscalar meson production

4 Complex amplitudes: **16** real polarization observables.

Complete measurement from 8 carefully chosen observables.

 $\boldsymbol{\pi}\boldsymbol{N}$ has high statistics

but in **KY** recoil is self-analysing 🙂

Tagged photons at CLAS

- Linearly polarized
 - coherent bremsstrahlung up to >90%.

Polarization observables at CLAS

Transverse polarized nucleon targets \checkmark

Polarization observables - a simple example, $\boldsymbol{\Sigma}$

 $\rho_f \frac{d\sigma}{d\Omega} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega} \right)_{unpol} \{ 1 - \frac{P_{\gamma}^{lin} \Sigma \cos 2\phi}{\rho_{\gamma}}$

- Systematics of detector acceptance cancel out.
- "Only" need to know P_{lin}, the degree of linear polarization.

1st pol. observables in K photoproduction on p at CLAS. P, C_x and C_z (Using circularly polarized photons)

Will analogous result hold with the observables from linearly polarized ?

g8b: July 2005

Polarized photon energy range: 1.3 - 2.1 GeV Events (single charged particle in CLAS): 10 billion

preliminary results: π^0 p, Mike Dugger, ASU

High statistics. Good agreement with previous measurement. We have P well determined.

From Brem. Calculation and piN results we expect 3% systematic error in P

g8b preliminary results - $K^+\Lambda$ and $K^+\Sigma^0$ Craig Paterson, Glasgow

$$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$$

 $\gamma p \longrightarrow K^+ \Sigma^0 \longrightarrow K^+ \Lambda \gamma \longrightarrow K^+ p \pi^- \gamma$

Single polarization observables ∑ Photon asymmetry P Recoil polarization (induced pol. along y)

T Target asymmetry

Double polarization observables

 O_x Polarization transfer along x O_z Polarization transfer along z

g8b preliminary results - K⁺Λ

0.6 0.8

etry 1.425GeV

CLAS g8b

GRAAL (Lieres 07)

0.2 0.4 0.6 0.8

0.2 0.4

- Results compared with previous results from GRAAL 8
 - 7, 50MeV Energy bins
 - 1175 -> 1475MeV
 - Good agreement with previous results

g8b preliminary results - $K^+\Lambda$

- Results compared with previous results from LEPS
 - 6, 100MeV Energy bins
 - 1550 -> 2050MeV
 - More bins for our data

Increase the angular coverage to backward angles

LEPS also recently have some consistent, new points at backward angles. Hicks et al., PRC 76, 042201(R) (2007).

g8b preliminary results - $K^+\Lambda$

g8b preliminary results - $K^+\Lambda$ Double polarization ovservable O_x

Results compared with Regge-Plus-Resonance model from Gent group

- Large Polarizations
- Some evidence for an important role for missing $D_{13}(1900)$ state
- Poor agreement at low energy

g8b preliminary results - K⁺Λ Full lamba polarization ?

g9 FROST – FROzen Spin Target (butanol = C_4H_9OH)

Meson photoproduction with linearly and circularly polarized photons on polarized target

■E02-112: ■E03-105/E04-102: ■E05-012: ■E06-013:

g9a running conditions

- November 3, 2007– February 12, 2008
- Longitudianally polarized target
- Circularly and linearly polarized photon beam 0.5-2.4 GeV
- Trigger: at least one charged particle in CLAS
- Target Pol > 80%, Relaxation time > 1600hrs better that design goals

g9b

- March July 2010
- Transversely polarized target

g9aFROST sample analysis of $gp \rightarrow \pi^+ n$ Eugene Pasyuk, ASU. Jo McAndrew, Edinburgh

- Select π^+ applying cut on β vs. p
- Vertex cuts
- Select missing neutron

-0.4 -0.2

 $\cos\theta_{cm}(\pi^{+})$

K production on n. Deuterium target

- G10. Unpolarized photons on Deuterium
- 1st measurement of σ for the γ n \rightarrow K^+ $\Sigma^{\text{-}}$

Sergio Anefalos Pereira, INFN.

• G13. Circularly and linearly polarized photons on Deuterium

• $\gamma n \rightarrow K^+ \Sigma^-$ analysis for polarization observables underway. Edwin Munevar, GWU

K production on n. Deuterium target

- How good a "free" neutron target is Deuterium ?
- G13. Compare photon asymmetry of $\gamma p(n) \rightarrow K^+ \Lambda^0(n)$ with $\gamma p \rightarrow K^+ \Lambda^0$ (free and bound p)

 $\gamma p(n) \rightarrow K^+ \Lambda^0(n)$ Russell Johnstone, Glasgow

K production on n. Deuterium target G13 γ n (p) -> $K_{s}^{0} \Lambda^{0}$ (p) γ n (p) -> $K_{s}^{0} \Sigma^{0}$ (p) Neil Hassall, Glasgow

K production on n. Deuterium target G13 1st measurement of Beam Asymmetry $\gamma n(p) \rightarrow K_s^0 \Lambda^0$ (p) Neil Hassall, Glasgow

Single, and double polarization observables in progress

K production on n. Deuterium target G13 1st measurement of Beam Asymmetry $\gamma n(p) \rightarrow K_s^0 \Sigma^0$ (p) Neil Hassall, Glasgow

Single, and double polarization observables in progress

Summary

- Kaon photoproduction at CLAS
- Missing resonances
 - Recent measurements already having impact on resonance predictions

Polarization observables

- Explosion of possibilities at CLAS.
- Complete measurement possible with K Y channels ... and coming soon

• KY on proton

- σ , P, C_x, C_z measured (**g1c**)
- Σ , T, O_x, O_z almost complete (**g8b**)
- E, G, L_x , L_z data taken, being analysed (g9a)
- F, H, T_x , T_z begins March 2010 (**g9b**)

KY on neutron

- 1st measurements of σ (g10), P, C_x, C_z, Σ , T, O_x, O_z (g13) prelim results, and analysis underway
- HDIce A new kind polarized target with H and D scheduled for Autumn 2010 (g14)

Recoil polarimetry possibilities ?

- How to do this for 4π detector

Nucleon polarimeter for CB@MAMI, D. Watts, Edinburgh

Graphite

g8b data. $\gamma + p \rightarrow \pi^+ n$ with (n,p) scatter (detect $\pi^+ p$)

CLAS coherent bremsstrahlung facility

- Tagging spectrometer with high rate, good energy and timing resolution
- High precision goniometer (GWU)
- High quality, thin diamond (Glasgow)
- Tight photon beam collimation (ISU)
- Polarimetry

"A device called a goniometer tilts the diamond, much like a lady turning her hand to admire the sparkle of a new ring." - JLAB On Target Magazine

Measurements with photon beam profile detector D. Glazier, Glasgow

1st Measurement of 2D photon enhancement for coherent bremsstrahlung (MAMI,Mainz) paper in preparation

Coherent peak at 300Mev, MAMI electron beam energy 855MeV

- · Good agreement with coherent bremstrahlung calculations
 - Improvements in incoherent component, collimation + multiple scattering.
- No evidence of high energy photons from quasi channeling.
- Investigation of 2D strip detector for polarimetry

g8b preliminary results - $K^+\Lambda$

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{un}} \left\{ 1 - P_{\gamma}^T \Sigma \cos 2\phi \right\}$

- K⁺Λ Photon Asymmetry, Σ, extracted from cos(2φ) fit to azimuthal kaon distribution
 - Fits shown for 1 energy bin
 - 340 (20E, 170) kinematic bins
 - Almost full angular coverage

g8b preliminary results - $K^+\Sigma^0$

- Results compared with previous results from GRAAL
 - 7, 50MeV Energy bins
 - 1175 -> 1475MeV
 - Good agreement with previous results

g8b preliminary results - $K^+\Sigma^0$

Results compared with previous results from LEPS

- 6, 100MeV Energy bins
- 1550 -> 2050MeV
- More bins for our data!!!

Increase the angular coverage to backward angles

Polarimetry: from pair (e⁺,e⁻) production

- Well described by QED, but experimentally difficult small opening angle
- Pair production

- simulations by Kharkov group
- Polarimeter built and tested at Sping8, recently tested at Jlab

- Polarimeter to be based on Jlab design
- Microstrip detectors, or pixel detectors (Atlas group)
- Bonn student completed 10 months exchange in Glasgow now to be full time in Bonn.

Microstrip Detectors

Polarimetry: from hadronic reaction

R. Beck, Mainz -> Bonn

Use reaction with a known photon asymmetry

- Can be high statistics
- · Very good relative monitor of polarization
- Combined beam, target polarization.
- Non-indpendent depends on specific expt
- Need very good systematics or calibration
- Awaiting MAMI polarized target and polarised photon beam in 2nd half of 2007

Recent preliminary results from JLab (g8b)

- Proton target
- Back to back charge particles in Start Counter
- Atomic or hardonic ?
- Asymmetry from ~20mins DAQ data
- Constant with E from 1.3GeV 1.9GeV

Crystal Ball Results

